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We extend the formalism of the thermodynamic two-time Green’s functions to nonextensive quantum sta-
tistical mechanics. Working in the optimal Lagrangian multiplier representation, the q-spectral properties and
the methods for a direct calculation of the two-time q Green’s functions and the related q-spectral density �q
measures the nonextensivity degree� for two generic operators are presented in strict analogy with the extensive
�q=1� counterpart. Some emphasis is devoted to the nonextensive version of the less known spectral density
method whose effectiveness in exploring equilibrium and transport properties of a wide variety of systems has
been well established in conventional classical and quantum many-body physics. To check how both the
equations of motion and the spectral density methods work to study the q-induced nonextensivity effects in
nontrivial many-body problems, we focus on the equilibrium properties of a second-quantized model for a
high-density Bose gas with strong attraction between particles for which exact results exist in extensive
conditions. Remarkably, the contributions to several thermodynamic quantities of the q-induced nonextensivity
close to the extensive regime are explicitly calculated in the low-temperature regime by overcoming the
calculation of the q grand-partition function.
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I. INTRODUCTION

The method of thermodynamic Green’s functions �GFs�
�1–10� is a powerful tool in ordinary statistical mechanics for
exploring the equilibrium and transport properties of a large
variety of many-body systems. These functions are related to
important physical quantities, and hence their calculation
constitutes one of the basic problems of extensive thermosta-
tistics.

Remarkably, the extraordinary effectiveness of the GF
technique in quantum many-body physics �1–7� has stimu-
lated a lot of research activity to extend this successful
method also to study extensive classical statistical mechanics
�8–10�. In the context of the two-time GFs �2,3� the founda-
tions of the classical formalism were introduced by Bogoliu-
bov and Sadovnikov �8� four decades ago and further sys-
tematic developments in this direction were performed only
many years later �2,9�. Additionally, the classical counterpart
of the quantum Matsubara GF framework �5� was achieved
in Ref. �10�. So also the two-time GF formalism in extensive
classical statistical mechanics can be now considered well
established. Although not currently used in the literature, it
has been successfully employed to study the thermodynam-
ics and the transport properties of several classical many-
body systems �2,8–10� also involving phase transitions and
critical phenomena �9�.

Various �also numerical� methods have been developed
for the calculation of the two-time GFs both in quantum and
classical statistical physics �1–7�. In addition to the most

known “equations-of-motion method” �EMM�, the related
“spectral density method” �SDM�, originally formulated by
Kalashnikov and Fradkin �7� within the quantum statistical
mechanics context, appears to be a very promising nonper-
turbative approach to perform reliable studies of the macro-
scopic properties of classical and quantum many-particle
systems �7,9�, avoiding an explicit calculation of the parti-
tion function.

At the present time, the situation does not appear so well
established in nonextensive statistical mechanics which has
attracted an increasing interest since the seminal proposal by
Tsallis made almost 20 years ago �11,12�. This framework
can be regarded as a generalization of the Boltzmann-Gibbs
statistical mechanics to properly describe macroscopic
memory effects �e.g., non-Markovian stochastic processes�
and, generally speaking, systems exhibiting nonergodic mi-
croscopic dynamics �13–15�.

Despite its elegant formalism, the Tsallis thermostatistics
is affected by some intrinsic difficulties in performing ex-
plicit analytical calculations for realistic many-body systems.
Nevertheless, by resorting to different techniques and ap-
proximations as generalizations of the extensive ones, the
Tsallis theory has been successfully applied to a wide variety
of systems for which nonextensivity effects are not negli-
gible �13–15� and must be taken into account for a proper
comparison with experiments. Known theoretical tools have
been employed and adapted in the Tsallis framework such as,
for instance, linear response theory �16�, perturbation and
variational methods �17�, path integral �18,19�, Monte Carlo
�20–24�, and molecular dynamics �21� techniques, and many
others. Less attention, however, has been devoted to the ex-
tension, to the nonextensive many-body world, of the well-*cosfab@sa.infn.it
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established thermodynamic GF technique �1–10� in ordinary
quantum and classical statistical mechanics.

Some years ago the GF method in the Kadanoff-Baym
framework �4� was generalized to the Tsallis quantum statis-
tical mechanics adopting the second-quantized representation
for many-particle systems �25,26�. In these works, the q GFs
for a nonextensive many-body system were formally ex-
pressed in terms of parametric integrals over the correspond-
ing extensive �q=1� quantities, q denoting the so-called Tsal-
lis parameter which measures the nonextensivity degree. Of
course, this method may be really useful when the many-
body problem for the extensive counterpart has been solved,
but unfortunately, this is possible only in a limited number of
situations. In any case, the crucial step to calculate nontrivial
contour integrals in the complex space constitutes an addi-
tional formidable problem which would require, generally,
further approximations. Thus, many-body methods which al-
low one to perform direct calculations of the q properties,
overcoming the a priori knowledge of the related extensive
ones, are desirable. Motivated by the conviction that a direct
q GF method may provide new and effective calculation
techniques to deal with nontrivial nonextensivity problems,
we have recently extended �27,28� the Bogoliubov-
Sadovnikov two-time GF framework �8,9� and the related
SDM �9� to nonextensive classical statistical mechanics
working conveniently within the so-called optimal Lagrang-
ian multiplier �OLM� representation suggested in Ref. �29�.
This choice avoids some intrinsic difficulties involved in
other ones and allows simplified analytical and numerical
calculations. In any case, our suggestion is quite general and
can be extended to different contexts preserving the physical
content, consistently with the equivalence of the current four
versions of the Tsallis statistics �30�.

The aim of the present article is to extend the two-time
GF formalism to the quantum nonextensive statistical me-
chanics within the OLM representation. Particular emphasis
will be devoted to the spectral density �SD� and its spectral
decomposition due to their relevance for practical calcula-
tions.

The q EMM and q SDM are here presented as powerful
tools for a direct calculation of the two-time q GFs and q SD,
respectively. Besides, in parallel with the extensive counter-
part �9�, we outline the key ideas to explore the dispersion
relation and the damping of elementary and collective exci-
tations in nonextensive many-body systems. Finally, with the
aim to show how the two-time GF method works when the
Tsallis q distribution is involved, we present analytical cal-
culations for a nontrivial high-density Bose gas with strong
attraction between the particles for which exact results exist
in the extensive case �31,32�. The effects of the q-induced
nonextensivity will be consistently explored in the low-
temperature regime using both the q EMM and q SDM.

The article is organized as follows. In Sec. II, we present
a summary of the basic ingredients of the nonextensive quan-
tum statistical mechanics which will be useful for the next
developments. In particular, we focus on the quantum OLM
representation which appears more convenient for our pur-
poses. Section III is devoted to the formulation of the two-
time GF method in the Tsallis quantum statistics, with em-
phasis on the spectral properties. In Sec. VI, we present a

nonextensive version of the EMM and SDM. Here, the q
SDM is properly implemented to offer the possibility to
study systematically the dispersion relation and the damping
of excitations within a unified formalism. Section V deals
with the application of these methods to a model which de-
scribes a high density Bose gas with strong attraction be-
tween the particles. Concluding remarks are drawn in Sec.
VI. Two appendixes close the article. In Appendix A the
recently proposed �27,28� two-time GF method in Tsallis
classical statistical mechanics is shortly reviewed with the
aim to point out the substantial differences between the non-
extensive quantum and classical frameworks. Appendix B
summarizes some mathematical details.

II. BASIC INGREDIENTS OF NONEXTENSIVE
QUANTUM STATISTICAL MECHANICS

The Tsallis nonextensive thermostatistics constitutes to-
day a new paradigm in the field of statistical mechanics. The
key problem of the Tsallis framework is to find the appropri-
ate von Neumann density operator � which maximizes the
generalized q entropy �in units kB=�=1�

Sq =
1 − Tr��q�

q − 1
, �1�

subject to appropriate constraints related to the evaluation of
the mean or expectation value of the observables within the
nonextensive scenario. Here Tr�¯� stands for the usual trace
operator.

In the literature, four possible choices have been consid-
ered for the evaluation of q expectation values �¯�q.

�i� The original Tsallis proposal �11�

�A�q = Tr��A� , �2�

where the Hermitian operator A corresponds to a generic
observable A. For a system with Hamiltonian H, this implies
the canonical representation

� = ��1 − q��� + �H�/q�1/q−1, �3�

in terms of the two Lagrange multipliers � and �. Unfortu-
nately, this choice involves some troubles related to the
Lagrange multiplier �.

�ii� The Curado-Tsallis �CT� choice �33�

�A�q = Tr��qA� , �4�

which yields the canonical result

� = Z q
−1�1 − �1 − q��H�1/1−q, �5�

with

Zq = Tr�1 − �1 − q��H�1/1−q. �6�

This avoids the explicit presence of the multiplier �, but has
the disadvantage to exhibit unnormalized mean values ��1�q
�1�.

�iii� The Tsallis-Mendes-Plastino option �12�

�A�q =
Tr��qA�
Tr��q�

, �7�

implying the canonical solution
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� = Z q
−1�1 −

�1 − q��
Tr��q�

�H − Uq��1/1−q

, �8�

with

Zq = Tr�1 −
�1 − q��
Tr��q�

�H − Uq��1/1−q

, �9�

where Uq= �H�q is the q internal energy. Here we have �1�q
=1 normalized q mean values, but troubles occur again in
obtaining � due to the presence of Tr��q�	�Zq�1−q in Eqs. �8�
and �9� �self-referential problem�.

�iv� The OLM improvement �29� which preserves the q
entropy �1�, but replaces the Tsallis-Mendes-Plastino-like
constraints by “centered” mean values. Essentially, the gen-
eral OLM procedure consists in maximizing the Tsallis gen-
eralized entropy �1� subject to the constraints

Tr� = 1 �10�

and

Tr��q�Aj − �Aj�q�� = 0 �j = 1, . . . ,M� , �11�

where the generalized mean values �Aj�q=Tr��qAj� /Tr��q�
for M relevant Aj �j=1, . . . ,M� observables are assumed to
be known a priori and hence are regarded as constraints in
the variational approach to the nonextensive thermostatistics.

In the canonical representation this yields

� = Z q
−1�1 − �1 − q���H − Uq��1/1−q, �12�

where the generalized partition function Zq is now given by

Zq = Tr�1 − �1 − q���H − Uq��1/1−q. �13�

As we see, the OLM framework avoids all the inconve-
niences occurring in the previous choices. Besides, in Eqs.
�12� and �13�, the Lagrange multiplier � does not depend on
the partition function and it is identified as the inverse physi-
cal temperature �29,30� ��=1 /T�, consistently with the ze-
roth law of thermodynamics.

The extension of the canonical OLM prescription to the
grand-canonical ensemble can be simply obtained from Eqs.
�12� and �13� by replacing H and Uq with H=H−�N and
Uq= �H�q=Uq−��N�q, where � is the chemical potential and
N denotes the operator describing the total number of par-
ticles in a system. Other ensemble representations can be
obtained similarly.

It must be emphasized that the four versions �i�–�iv� of the
Tsallis thermostatistics are equivalent in the sense that the
probability distribution for each of them can be easily de-
rived from any other of them by using appropriate transfor-
mation rules �30�. In any case, for practical calculations one
must select the most convenient version case by case.

As already mentioned, in the present work we find it con-
venient to adopt the OLM version to formulate the two-time
GF method in nonextensive statistical mechanics, but the
framework can be easily extended to different versions by
using the prescriptions given in Ref. �30�.

To close this short review of the basic elements of the
Tsallis thermostatistics, we mention two relevant features of
the nonextensive scenario.

The first one, tacitly assumed before, is that the basic

OLM canonical operator f̂ q=1− �1−q���H−Uq� must be
positive definite. This means that, for any specific nonexten-
sive problem, one must take into account only microstates

n�, with H
n�=En
n�, satisfying the cutoff condition �12�

En�
1

�1 − q��
+ Uq, if q� 1, �14a�

En�
1

�1 − q��
+ Uq, if q� 1, �14b�

where the quantity 1 / �1−q��+Uq could have, in principle,
positive or negative sign.

The second crucial question concerns the physical origin
of the nonextensivity parameter q. Unfortunately, little has
been definitively proposed in terms of first principles to ex-
plain the appearance of the Tsallis thermostatistics in many
real situations and to understand the physical meaning of the
elusive parameter q. We cite below some general ideas
which, in our opinion, may have a seminal role in future
research activity on the subject.

After several attempts �15�, a well-defined scenario
emerged almost seven years ago, now called the “finite-heat-
bath picture.” First Almeida �34� derived the Tsallis power-
law probability distribution from first principles assuming
exactly constant the heat capacity CB of the thermal bath in
contact with the system of interest. Here, the physical mean-
ing of q is simply expressed in terms of CB. Specifically,
when it is finite, q�1 and one has the Tsallis distribution,
while for an infinite heat capacity of the bath, q=1 and one
recovers the conventional exponential distribution. This pic-
ture has been further elaborated �35,36�, but a substantial
progress was performed in Ref. �36� where, via a model-free
derivation of the Tsallis statistics �i.e., without resort to the
microscopic details of a system and of its surrounding�, it is
shown that the finiteness of the heat capacity of the environ-
ment is not necessarily due to only the finiteness of its de-
grees of freedom, as reductively assumed in previous treat-
ments.

A more general point of view was reported in Ref. �37�
where the parameter q was interpreted as a measure of fluc-
tuations of the parameters �as the temperature� in the expo-
nential distribution and expressed in terms of the variance of
their inverse. The superstatistics �38�, subsequently devel-
oped as a generalization of this idea, consists in a superpo-
sition of different statistics relevant for driven nonequilib-
rium systems with complex dynamics in stationary states
with large fluctuations of intensive parameters �e.g., the tem-
perature, chemical potential, energy dissipation, etc.� on long
time scales. It explains the emergence of the power-law sta-
tistics for real systems as a result of fluctuations in their
environments, supporting the Tsallis framework as a special
case. In this “fluctuational picture,” the nonextensivity pa-
rameter q is found to be directly related to proper stochastic
processes or constraints imposed to the systems and, in the
absence of fluctuations, the extensive case is consistently re-
produced. Remarkably, the superstatistics seems to offer a
general formalism for treating nonequilibrium stationary
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states of complex systems which exhibit dynamics that can
be decomposed into several dynamics on different time
scales. Some effort has been performed recently �39� to le-
gitimate this theory as a true statistical mechanics frame-
work, but several aspects remain to be further elaborated and
clarified.

Other, rather fragmentary, proposals to justify the Tsallis
statistics exist, but we mention here only some of them that,
in our opinion, may be relevant in nonextensive many-body
physics.

There is a broad consensus of opinion that the nonexten-
sivity may occur also in cases where long-range interactions
play a relevant role, the gravitational and Coulomb forces
being important examples with laboratory and astrophysics
implications �15�. However, no definitive statistical founda-
tion for long-range interacting systems, such as the self-
gravitating ones, has still been well established and, in par-
ticular, the true physical nature of q in terms of the range of
the forces and the space dimensions has not been well un-
derstood yet �40�.

Also confining traps for interacting bosonic or fermionic
systems may induce nonextensivity effects �41� due to the
interplay between the particle interactions and the trapping
potential. Moreover, interesting findings about the physical
origin and the measurement of the parameter q have been
obtained recently for complex magnetic systems such as the
manganite La0.7Sr0.3MnO3 /MgO and the amorphous alloy
Cu90Co10 �42�. Such compounds seem to embody three basic
ingredients which may induce nonextensivity: long-range in-
teractions, clusters with fractal shapes, and intrinsic inhomo-
geneity. With these features in mind it has been shown �42�,
via theory �at a mean-field approximation level� and scan-
ning tunneling spectroscopy measurements, that the mag-
netic properties of these materials can be properly described
using the Tsallis thermostatistics, q measuring the competi-
tion of the intrinsic inhomogeneity and dynamics.

Finally, for our demonstrative application to a high-
density Bose gas performed in a next section, we have in
mind some of the nonextensivity mechanisms outlined be-
fore. For instance, we think about a system of bosons in a
fluctuating environment, in confining traps, or confined to a
self-gravitational field as in nonrelativistic boson stars �43�.

We conclude this section noting that it is frequently con-
venient to use the so-called q exponential function

eq
x 	 �1 + �1 − q�x�1/1−q, �15�

which simplifies sensibly the formalism of the nonextensive
statistical mechanics. One can verify that this function �a�
yields e1

x =ex for q→1, �b� for q�1 vanishes as a power law
when x→−� and diverges at x=−1 / �1−q�, and �c� for q
�1 has a cutoff at x=−1 / �1−q� below which it becomes
identically zero.

Using the function �15�, the basic expressions �12� and
�13� for the OLM canonical formulation can be rewritten as

� = Z q
−1eq

−��H−Uq� �16�

and

Zq = Treq
−��H−Uq�. �17�

It is then immediate to see that, for q→1, Eqs. �16� and �17�
reproduce the conventional Boltzmann-Gibbs framework.

III. TWO-TIME GREEN’s FUNCTIONS AND SPECTRAL
DENSITY IN QUANTUM NONEXTENSIVE

STATISTICAL MECHANICS

A. Definitions and spectral properties

In strict analogy with the extensive case �2,3,6�, we define
the two-time retarded �	=r� and advanced �	=a� q GFs in
quantum nonextensive thermostatistics for two operators A
and B as �44�

GqAB
�	� �t,t�� = − i
	�t − t����A�t�,B�t�����q

	 ��A�t�;B�t����q
�	� �	 = r,a� . �18�

Here, 
r�t− t��=
�t− t��, 
a�t− t��=−
�t�− t�, and 
�x� is the
step function. In Eq. �18�, �. . . , . . .�� denotes a commutator
��=−1� or an anticommutator ��= +1� and X�t�=eiHtXe−iHt

is the Heisenberg representation of the operator X, satisfying
the Heisenberg equation of motion �EM� �45�

dX�t�
dt

= i�H,X�t��−. �19�

The definition �18� reproduces the conventional extensive
formalism for q=1 and allows us to develop the q GF frame-
work equivalently with commutators or anticommutators.
However, in practical calculations it will be convenient to
use, in Eq. �18�, �=−1 or �= +1 for bosonic or fermionic
operators, respectively.

Physically relevant quantities, which enter the definition
of q GFs, are the two time q correlation functions �CFs�
FqAB�t , t��= �A�t�B�t���q and FqBA�t� , t�= �B�t��A�t��q for the
corresponding operators. Working within the equilibrium sta-
tistics, one can easily prove that the two-time q CFs and q
GFs depend on times t and t� only through the difference
�= t− t�. So one can write

GqAB
�	� �t − t�� = ��A�t − t��;B��q

�	� = ��A;B�t� − t���q
�	�.

�20�

This feature allows us to introduce the Fourier transforms

GqAB
�	� ��� = �

−�

+� d

2�
GqAB

�	� ��e−i�, �21�

FqXY��� = �
−�

+� d

2�
FqXY��e−i�, �22�

where GqAB
�	� ��= ��A��� ;B��q,

�	� will be named the 	-type q
GF of A and B in the  representation and FqXY��
	�X���Y�q, will be called the q-spectral intensity of the
time-dependent q CF FqXY���, with I��=�−�

+�dtI���ei�

�I=GqAB
�	� ,FqAB , . . .�.

We now define the time-dependent q SD for the operators
A and B �2,3,7� as
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�qAB��� = ��A���,B���q. �23�

For its Fourier transform �the q SD in the  representation�

�qAB�� = ��A���,B���q,, �24�

one immediately finds the exact result

�
−�

+� d

2�
�qAB�� = ��A,B���q, �25�

which constitutes an important “sum rule” for the q SD
�qAB�� to be used for physical consistency of practical cal-
culations and approximations.

Then, using the integral representation for the 	-step func-
tion


	��� = i�
−�

+� dx

2�

e−ix�

x + �− 1�	i�
, �→ 0+, �26�

where the symbol �−1�	 stands for +1 if 	=r and −1 if 	
=a, we obtain the q-spectral representation

GqAB
�	� �� = �

−�

+� d�

2�

�qAB���
 − � + �− 1�	i�

, �→ 0+, �27�

for the Fourier transforms of the two-time q GFs �20�.
Combining Eq. �27� and the sum rule �25�, one can get

another general result which, as in the extensive case, may
play a relevant role in practical calculations involving the q
GFs. Indeed, as 

→� we have

GqAB
�	� �� = −1�

−�

+� d�

2�

�qAB���

1 −
�−�−1�	i�




��A,B���q


+

1

2�
−�

+� d�

2�
�qAB����� − �− 1�	i��

+ O� 1

3� �28�

and hence

GqAB
�	� �� � �−1 if ��A,B���q � 0,

−� �� � 2� if ��A,B���q = 0,
� �29�

which provides a relevant boundary condition for the q GFs.
As in the quantum extensive case �2,3� one can easily

show that the q GFs GqAB
�	� ��, analytically continued in the

complex  plane, are analytical functions in the upper �for
	=r� and lower �for 	=a� half planes. Then, these functions
can be combined to construct the q GF of complex :

GqAB�� = �
−�

+� d�

2�

�qAB��
 − �

= �GqAB
�r� �� , Im � 0,

GqAB
�a� �� , Im � 0,

�
�30�

which is analytical in the whole complex  plane with a cut
along the real axis where singularities may occur.

It is worth noting that, in terms of the SD, no formal
differences exist for the-spectral representations of the GFs
in the extensive and nonextensive contexts. Hence, most of

the developments in the extensive two-time GF framework
remain formally valid in the nonextensive one. For instance,
using the �-function representation

��x� = lim
�→0+

1

2�i
� 1

x − i�
−

1

x + i�
� , �31�

we have the relation

�qAB�� = i�GqAB� + i�� − GqAB� − i���

= i�GqAB
�r� �� − GqAB

�a� ��� , �32�

which expresses the q SD in terms of the related two-time q
GFs in the  representation. This result, which is expected to
play an important role in the applications of the q GF method
�as happens in the extensive case�, suggests also that the cut
for GqAB�� along the real axis is determined by Eq. �32� and
its singularities are given by real  values satisfying the
condition �qAB���0. It is worth noting that, in general,
GqAB�� has to be regarded as a many-valued function of the
complex variable . Hence, its singularities lie on the real
axis on the first Riemann sheet. On the other sheets, the
singularities may shift to the complex plane, leading to the
appearance of complex poles.

Another important result can be easily obtained assuming
�qAB�� real and using the relation

lim
�→0+

�
−�

+�

d�
f���

� −  + �− 1�	i�

= P�
−�

+�

d�
f���
� − 

− �− 1�	i�f�� , �33�

where P denotes the main part of the integral. From Eq. �27�,
we obtain indeed

GqAB
�	� �� = − P�

−�

+� d�

2�

�qAB���
� − 

−
�− 1�	

2
i�qAB�� .

�34�

Hence we get

ReGqAB
�	� �� = �− 1�	P�

−�

+� d�

�

ImGqAB
�	� ���
� − 

, �35�

with

�qAB�� = − 2�− 1�	ImGqAB
�	� �� �36�

and, in particular,

�qAB�� = − 2ImGqAB
�r� �� . �37�

In analogy with the extensive counterparts �2,3�, the relations
�35� between the real and imaginary parts of GqAB

�r� �� and
GqAB

�a� �� will be called q dispersion relations or nonextensive
Kramer-Kronig relations.

In the next subsection we will derive spectral decomposi-
tions for �qAB��, GqAB��, FqAB���, and FqAB�� which al-
low us to obtain information about the nature of the GF
singularities and hence about the excitations in nonextensive
quantum many-body systems.
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B. q-spectral decompositions

Let �
n�� and �En� be the selected eigenvectors and eigen-
values of the Hamiltonian H of a many-body system and
assume that �
n�� is a complete orthonormal set of states. In
this representation, the q SD �qAB��, as given by the Fou-
rier transform �24�, can be written as

�qAB�� =
2�

Z̃q

�
n,m

�1 − �1 − q���En − Uq��q/1−q

��1 + ��1 − �1 − q���Em − Uq�
1 − �1 − q���En − Uq� �q/1−q�

�AnmBmn�� − mn� , �38�

where use is made of the OLM canonical framework for
calculation of the q averages. In Eq. �38�,

Z̃q = Tr�
q = �

n

�1 − �1 − q���En − Uq��q/1−q, �39�

Xnm= �n
X
m�, and mn=Em−En. Besides, the spectral repre-
sentation �30� for GqAB�� yields

GqAB�� =
2�

Z̃q

�
n,m

�1 − �1 − q���En − Uq��q/1−q

��1 + ��1 − �1 − q���Em − Uq�
1 − �1 − q���En − Uq� �q/1−q� AnmBnm

 − mn
.

�40�

Analogously, for the two-time q CF FqAB��� and its Fourier
transform FqAB��, one easily finds

FqAB��� =
2�

Z̃q

�
n,m

�1 − �1 − q���En − Uq��q/1−qAnmBmne−imn�

�41�

and

FqAB�� =
2�

Z̃q

�
n,m

�1 − �1 − q���En − Uq��q/1−qAnmBmn

��� − mn� , �42�

with similar expressions for FqBA��� and FqBA��.
The comparison of the previous relations with the corre-

sponding extensive ones �2,3� indicates that the Tsallis sta-
tistics does not modify the meaning of the GF singularities,
but changes substantially the structure of the spectral weights
with the introduction of a mixing of the energy levels which
is absent in the extensive framework. Equations �40� and
�41� suggest indeed that the real poles of GqAB��—i.e., the
frequencies mn—which are related to the eigenvalues of the
Hamiltonian, represent the frequency �energy� spectrum of
undamped excitations �oscillations in time of FqAB���� in the
system. It is worth noting that, for a macroscopic system, the
� poles in the spectral representation �40� are expected to be
lying infinitesimally close, therewith defining a continuous
function �AB�� for real . Then one can speculate that the
excitation concept may work only under the basic assump-
tion that the q SD exhibits some pronounced peaks whose

widths have to be considered as a direct measure of the
damping or the lifetime of excitations �or q quasiparticles,
elementary or collective depending on the physical nature of
the operators A and B�. As mentioned before, this picture
should be associated with the appearance of further compli-
cated singularities of the q GF GqAB�� which may occur in
the  complex plane on the Riemann sheet below the real
axis where GqAB

�r� �� is not an analytical function. Hence, in
practical calculations, one must search for the complex poles
of GqAB

�r� �� very close to, but below, the real  axis. For each
of them, the real part will determine the frequency of the
excitations �the q excitation dispersion relation� and the
imaginary part will represent their damping or lifetime. In
this scenario, �qAB�� will result a superposition of quasi-
Lorentian peaks, at characteristic frequencies, whose widths
will represent the damping of the related excitations. Of
course, if these widths reduce to or are zero under appropri-
ate physical conditions, the q SD will be given by a super-
position of � functions, signaling the occurrence of un-
damped excitations in the system.

C. Expressions of the two-time q correlation functions
in terms of the q-spectral density

In the previous section compact relations between
GqAB

�	� �� and �qAB�� have been obtained in strict analogy
with the quantum extensive counterpart �2,3�. We will show
below that the peculiar nature of the Tsallis probability dis-
tribution prevents us from expressing the two-time q CFs
�A���B�q and �BA����q directly in terms of the q SD �qAB��
or the related q GFs GqAB

�	� �� �	=r ,a�.
First, it is worth recalling that in extensive quantum sta-

tistical mechanics it is a remarkable feature, the existence of
direct relations, which allow us to express �A���B�
= �A���B�q=1 and �BA����= �BA����q=1 in terms of �AB�� or
GAB

�	��� �	=r ,a� for two arbitrary operators A and B. For
future utility we remember that these relations read �2,3�

�A���B� = �
−�

+� d

2�

�AB��e−i�

1 + �e−� �43�

and

�BA���� = �
−�

+� d

2�

�AB��e−i�

e� + �
, �44�

from which the corresponding static CFs can be immediately
obtained setting �=0.

The situation becomes sensibly more complicated within
the nonextensive context. To see this in a transparent way, it
is convenient to start with the static q CFs for two arbitrary
operators. Taking properly into account the presence of the �
functions in the spectral decomposition �38� for the q SD
�qAB��, we can also write
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1

2�

�qAB��
1 + �ẽ q

−� = Z̃ q
−1�

n,m
ẽ q

−��En−Uq�

��1 + �ẽ q
−��Em−Uq�/ẽ q

−��En−Uq�

1 + �ẽ q
−��Em−En� �

�AnmBmn�� − mn� , �45�

where we have conveniently introduced the modified q ex-
ponential function

ẽq
x = �eq

x�q = �1 + �1 − q�x�q/1−q. �46�

Then, the integration over  easily gives the exact relation

�
−�

+� d

2�

�qAB��
1 + �ẽ q

−� = Z̃ q
−1�

n,m
ẽ q

−��En−Uq�

��1 + �ẽ q
−��Em−Uq�/ẽ q

−��En−Uq�

1 + �ẽ q
−��Em−En� �AnmBmn,

�47�

with Z̃q=Trẽ q
−��H−Uq�.

By inspection of the right-hand side of this equation, one
argues that it does not reduce to the correlation function
�AB�q as happens in the extensive case q=1. Nevertheless, if
we introduce the “q operators” Aq and Bq �related to the
original ones A and B� defined by the matrix elements

Aqnm = �n
Aq
m� = Cq�n,m�Anm, �48a�

Bqnm = �n
Bq
m� = Cq�m,n�Bnm, �48b�

where

Cq�n,m� = �1 + �ẽ q
−��Em−Uq�/ẽ q

−��En−Uq�

1 + �ẽ q
−��Em−En� �1/2

, �49�

with Cq=1�n ,m�=1, Eq. �47� yields

�AqBq�q = �
−�

+� d

2�

�qAB��
1 + �ẽ q

−� . �50�

Similarly, with �qBA��=��qAB�−�, one finds

�BqAq�q = �
−�

+� d

2�

�qAB��
ẽq
� + �

. �51�

The previous spectral relations, which express the q averages
for products of the two q operators Aq and Bq in terms of the
single q SD �qAB��, are remarkably similar to the extensive
static CFs for A and B and, as expected, they reduce consis-
tently to them for q→1. Of course, it is �XqYq�q� �XY�q
�X ,Y =A ,B� for q�1.

Concerning the dynamical q CFs for q operators, using
Eqs. �42�, �45�, and �49� it is now easy to show that the
following relations are true:

�Aq���Bq�q = �
−�

+� d

2�

�qAB��e−i�

1 + �ẽ q
−� �52�

and

�BqAq����q = �
−�

+� d

2�

�qAB��e−i�

ẽq
� + �

, �53�

which reduce to Eqs. �43� and �44� as q→1.
The substantial difference with respect to the case q=1

lies in the unfortunate feature that, for q�1, the previous
compact relations express the q averages for products of the
complicated q operators Aq and Bq in terms of �qAB��. This
may constitute a serious difficulty in exploring physical
cases involving directly the CFs of the operators A and B
which enter the definitions of GqAB

�	� and �qAB��. Neverthe-
less, it is possible to obtain explicit relations, although cum-
bersome and in general not very handy, which relate the CFs
for the physical operators A and B to those for the corre-
sponding q operators. Indeed, from Eqs. �47�, �50�, and �51�
it is immediate to show that, for the static case,

�AB�q = �
−�

+� d

2�

�qAB��
1 + �ẽ q

−�

− Z̃ q
−1�

n,m
ẽ q

−��En−Uq�Dq�n,m�AnmBmn �54�

and

�BA�q = �
−�

+� d

2�

�qAB��
ẽq
� + �

− Z̃ q
−1�

n,m
ẽ q

−��En−Uq�Dq�n,m�BnmAmn, �55�

with Dq�n ,m�=Cq
2�n ,m�−1→0 as q→1. Similar expres-

sions are true for dynamical CFs �A���B�q and �BA����q,
which will involve exponential oscillations in time.

A comparison with the corresponding extensive ones �43�
and �44� allows us to understand, in a transparent way, the
nature of the deviations from the extensive limit q=1. It is
worth noting that, under the condition


�1 − q���H − Uq�
� 1, �56�

the previous relations simplify to

�A���B�q � �
−�

+� d

2�

�qAB��e−i�

1 + �ẽ q
−� �57�

and

�BA����q � �
−�

+� d

2�

�qAB��e−i�

ẽq
� + �

, �58�

which become exact for q=1. Of course, the simplified static
q CFs for A and B can be obtained setting �=0 in Eqs. �57�
and �58�. These equations may be conveniently used in prac-
tical calculations. Of course, without the restrictive condition
�56�, one must use the cumbersome Eqs. �54� and �55� and
resort to numerical calculations taking properly into account
the cutoff condition �14a� and �14b�. It is worth noting that,
although the condition �56� is certainly verified in the limit
q→1, it can be also realized for q far from unity with suit-
able choices of the parameters � and En−Uq. However, in
view of a still reduced number of applications �27,46�, in
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order to gain experience in using the q many body formalism
developed before for more complex situations, it may be in
any case useful to consider weak nonextensivity conditions
with q close to unity.

D. Parametric representation for the two-time q
Green’s functions

As a conclusion of this section, we will present an alter-
native way to introduce the two-time GFs, the related SD,
and the two-time CFs by using a parametric representation,
suggested in Refs. �25,26� in the context of the Kadanoff-
Baym formalism �4�. This representation allows to express
the relevant q quantities in terms of appropriate parametric
integrals involving the corresponding q=1 ones.

The aim is to clarify the statement given in the Introduc-
tion about the effectiveness of the method in practical calcu-
lations and to stress again the potentiality of our framework
for a direct calculation of the q quantities of interest. The
basic idea is to take b=1− �1−q���H−Uq� and alternatively
z=1+1 / �1−q�, z=1 / �1−q�, and z=q / �1−q� in the contour
integral representation

�−1�z� = ib1−z�
C

du

2�
exp�− ub��− u�−z, �59�

with b�0 and Re z�0. Here C denotes the contour in the z
complex plane which starts from +� on the real axis, en-
circles the origin once counterclockwise, and returns to +�.
With these ingredients, one can easily obtain �25,26� the fol-
lowing representation for Zq���, GqAB

�	� �� ;��, and �Aq���Bq�q
�here we need to explicit the � dependence�

Zq��� = �
C

du Kq
�1��u�Z1�− �u�1 − q�� , �60�

GqAB
�	� ��;�� = �

C

du Kq
�2��u�Z1�− �u�1 − q��G1AB

�	�

�„�;− �u�1 − q�… , �61�

and

�Aq���Bq�q = �
C

du Kq
�3��u�Z1�− �u�1 − q���A���B�1,−�u�1−q�,

�62�

where

Kq
�1��u� =

i

2�
��2 − q

1 − q
�e−u�1+�1−q��Uq��− u�−�2−q/1−q�,

�63�

Kq
�2��u� = −

�1 − q�
�Zq�q Kq

�1��u� , �64�

Kq
�3��u� =

1 − q

q
Kq

�2��u� , �65�

and Z1, G1AB
�	� , and �A���B�1,� denote the corresponding ex-

tensive quantities.

An analogous integral representation for the q SD
�qAB� ;�� can be simply obtained by replacing, in the Fou-
rier transform of Eq. �61�, the relation �27� which connects
GqAB

�	� � ;�� to �qAB� ;�� and, for q=1, G1AB
�	� � ;�� to the

extensive spectral density �1AB� ;��= ��A��� ,B���1,�;. One
finds

�qAB�;�� = �
C

du Kq
�2�Z1�− �u�1 − q���1AB

�„;− �u�1 − q�… . �66�

In view of the previous cumbersome �although elegant� para-
metric representation, in our opinion the method to reduce q
many-body problems to the corresponding extensive ones
does not appear, in general, convenient in practical calcula-
tions. The two main reasons are that �a� it involves the a
priori explicit calculation of �q=1�-quantities which, except
for a limited number of simple cases, requires a first step of
more or less reliable approximations; �b� after that, one must
calculate nontrivial contour integrals of complicated func-
tions. In general, this may be a formidable problem which
could require additional approximations.

Thus, we consider it worthy of interest to develop many-
body methods for a direct study of the q properties overcom-
ing the a priori knowledge of the related extensive ones. We
introduce below the appropriate extensions of two well-
known and powerful quantum many-body methods �for the
classical framework, see Appendix A�. Next, we will support
our statement by means of a direct detailed study of the
q-induced nonextensivity effects on the low-temperature
properties of a nontrivial many-boson model. A preliminary
study, along this direction, of a d-dimensional Heisenberg
spin model with long-range interactions was performed in
Ref. �46�. These are only two nontrivial many-body prob-
lems used by us to test the effectiveness of our suggestion to
perform direct nonextensivity calculations within a genuine q
many-body theory.

IV. METHODS FOR DIRECT CALCULATION
OF THE TWO-TIME q GREEN’s FUNCTIONS

AND THE q-SPECTRAL DENSITY

In this section we present an extension to the nonexten-
sive quantum statistical mechanics of two intrinsically non-
perturbative methods in strict analogy to the extensive coun-
terpart. These methods will be called the q EMM, for a direct
calculation of the two-time q GFs, and the q SDM, for a
direct calculation of the q SD. In principle, in view of the
exact relations established in the previous section, both the
methods are completely equivalent in the sense that they
should give exactly the q GFs and the related q SDs. Never-
theless, previous experiences in quantum �7� and classical �9�
extensive statistical mechanics suggest that, in practical cal-
culations, the q SDM may have several advantages for mak-
ing more systematic and controllable approximations.

A. q equations-of-motion method

By differentiating Eq. �20� with respect �= t− t� we obtain
the q EM for the q GFs in the � representation,
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i
d

d�
��A���;B��q

�	� = ������A,B���q + ���A���,H�−;B��q
�	�,

�67�

or in the  representation �more convenient in practical cal-
culations�,

��A���;B��q,
�	� = ��A,B���q + ���A���,H�−;B��q,

�	� . �68�

Equations �67� and �68� are not closed because higher-order
q GFs occur in the problem. Therefore, one needs to consider
an additional EM for these new functions which is again not
closed. By iteration of this procedure, we obtain an infinite
hierarchy of coupled EMs of increasing order which can be
written in a compact form as

i
d

d�
��LH

mA���;B��q
�	� = ������LH

mA,B���q + ��LH
m+1A���;B��q

�	�

�m = 0,1,2, . . .� �69�

or

��LH
mA���;B��q,

�	� = ��LH
mA,B���q + ��LH

m+1A���;B��q,
�	�

�m = 0,1,2, . . .� �70�

in time and Fourier representation, respectively. Here, we
have used the EM �19� in the form

i
d

d�
A��� = LH

1 A��� = �A���,H�−, �71�

and the operator LH
m means LH

0 A=A, LH
1 A= �A ,H�−, LH

2 A
= [�A ,H�− ,H]−, and so on. Note that the chain of q EMs in
the representation �69� or �70� is formally the same for dif-
ferent types of q GFs and hence one can eliminate the index
	 when the physical context does not offer ambiguity.

To solve the chain of EMs in the form �69� and �70�, we
must add appropriate boundary conditions which, in the 
representation, can be identified with the asymptotic behav-
iors �29�. Of course, although Eqs. �69� and �70� are exact, it
is impossible to find a complete solution for interacting sys-
tems. In practical calculations one is forced to use decou-
pling procedures, and hence approximate methods, to reduce
the infinite chain of coupled equations to a finite closed one
which may be solved. However, in general, systematic and
controllable decouplings are not easy to find and one must
check the reliability of a given approximation by comparing
the results with experiments, simulations, or other types of
approaches. The q SDM, which will be the subject of the
next subsection, should be more flexible in such direction as
it happens in the extensive case �7�.

B. q-spectral density method

By successive derivatives of �qAB��� �Eq. �23�� with re-
spect to � and using the EM �71�, we have

dm

d�m�qAB��� = �− i�m��LH
mA���,B���q �m = 0,1,2, . . .� .

�72�

Then, taking the Fourier transform of Eq. �72� and setting
�=0, integration over  yields finally the infinite set of exact
equations for �qAB��:

�
−�

+� d

2�
m�qAB�� = ��LH

mA,B���q = ��A,LH
mB���q

�m = 0,1,2, . . .� , �73�

where the operator LH
m means LH

0 B=B, LH
1 B= �H ,B�−, LH

2 B
= [H , �H ,B�−]−, and so on. The quantity on the left-hand side
of Eq. �73� will be called the m moment of �qAB��, and the
relations �73� constitute an infinite set of exact moment equa-
tions �MEs� or sum rules for the q SD.

The infinite set �73� can be seen in a different way. Since
the � commutators and hence the q expectation values in-
volved on the right-hand side can be calculated, at least in
principle, it is quite remarkable that the m moments of the q
SD can be explicitly obtained without a priori knowledge of
the function �qAB��. This important result implies that the
sequence of Eq. �73� represents a typical moment problem.
Its solution would yield the unknown q SD and hence all the
related quantities �q GFs, q CFs, and other observables�. Un-
fortunately, also this problem cannot be solved exactly and
one must look for approximate solutions along the lines
specified below which constitute the key idea of the original
SDM �7�.

1. Polar ansatz

As suggested by the exact spectral decomposition �38�,
one seeks for an approximation of �qAB�� as a finite sum of
properly weighted � functions of the form �polar ansatz�

�qAB�� = 2��
k=1

n

�qAB
�k� �� − qAB

�k� � , �74�

where n is an integer number. The unknown parameters �qAB
�k�

and qAB
�k� , depending on the physical nature of the operators

A and B, have to be determined as a solution of the finite set
of 2n equations obtained by inserting expression �74� into
the first 2n MEs, Eq. �73�. Physically, the parameters qAB

�k�

play the role of effective eigenvalues of the Hamiltonian and
each of them represents a real pole of GqAB�� corresponding
to a mode of undamped oscillations for the q CF �A���B�q
�see Eq. �41��.

2. Modified Gaussian ansatz

As outlined at the end of Sec. III B, there are physical
situations where the damping of oscillations in the system
under study may be relevant and hence the polar approxima-
tion �74� is inadequate. In these cases, the basic idea of the
SDM, related to the moment problem �73�, remains still
valid, but it is necessary to choose a more appropriate func-
tional structure for the q SD which allows one to determine
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the modes of excitations in the system and their damping or
lifetime. In the extensive context, a generalization of the
SDM in this sense was first proposed by Nolting and Oles
�47� for Fermi systems and by Campana et al. �48� for Bose
and classical systems whose SDs are not positive definite in
the whole range of . Following their key idea—to assure
the convergency of the q SD moments at any order and to
preserve the intrinsic physical character of �qAB��—one
can assume for the q SD the modified Gaussian ansatz �48�

�qAB�� = 2��ẽq
� + ���

k=1

n
�qAB

�k�

���qAB
�k� e−� − qAB

�k� �2/�qAB
�k�

.

�75�

Clearly, with the functional representation �75� for �qAB��,
the width of the peak in =qAB

�k� is related to the parameter
�qAB

�k� and the lifetime of the excitations with frequency qAB
�k�

has to be identified with �qAB
�k� =��qAB

�k� under the condition
�qAB

�k� / �qAB
�k� �2�1. The choice �75� is only motivated by the

fact that it makes direct contact with the notation used in the
literature for extensive problems �47,48� and, in view of pre-
vious experiences, it is expected to simplify the algebra also
in explicit calculations about q-induced nonextensivity ef-
fects.

As in the q EMM, also in the q SDM the problem remains
to close the truncated finite set of q-MEs arising from the
polar ansatz �74� or the modified Gaussian ansatz �75�. In
any case, evaluation of the right-hand side of Eq. �73� should
generally involve higher-order q SDs. Hence, higher-order
moment problems should be considered and the difficulty of
calculations will increase considerably. So, in order to solve
self-consistently the finite set of q MEs, which arises from
Eq. �73� using the ansatz �74� or �75�, it is usually necessary
to use some decoupling procedures and thus to introduce, in
a systematic way, additional consistent approximations in the
SDM as in the extensive case �7,9,47,48�.

V. NONEXTENSIVITY EFFECTS FOR A HIGH-DENSITY
BOSE GAS WITH STRONG ATTRACTION

BETWEEN PARTICLES

A. Model

For practical and explicit calculations we consider here a
nontrivial Bose model introduced several years ago by Bab-
ichenko �31� with the aim to explore the properties of a Bose
system with strong attraction between the particles. In con-
trast with real situations, where the interparticle interaction
potential is characterized by a hard repulsive core at short
distances and a strong attractive well at large distances, in
Ref. �31� the repulsive core was assumed to be soft. This
simplification allowed us to study exactly the properties of
the model at T=0, making it possible to use diagrammatic
techniques quite similar to the ones used for high-density
Bose systems with a Coulomb pair interaction �49�. It is
worth noting that, although the choice of a soft repulsive
core does not correspond to the real situation, the possibility
to obtain exact results for such a model is undoubtedly of
interest since it leads to a strongly compressed ground state

strictly related to the peculiar relation between the param-
eters of the attractive and repulsive parts of the pair interac-
tion potential. In this sense, the model may be considered as
a complement to the well-studied weakly nonideal Bose gas.

The same high-density Bose model was further studied in
Ref. �32� to explore the finite-temperature effects in the con-
text of the extensive many-body theory. Specifically, the
usual Bogoliubov approximation was proved to be valid for
this model and the exact results by Babichenko �31� were
simply reproduced. Besides, the low-temperature properties
of the model were again achieved without employing cum-
bersome diagrammatic techniques.

On this ground, also as a further contribution to the gen-
eral Bose-Einstein condensation �BEC� scenario, we apply
the q-many-body methods of Sec. VI to investigate the
q-induced nonextensivity effects on the low-temperature be-
havior of the relevant thermodynamic quantities for the Bab-
ichenko model �31�.

As a first step, we present below the definition of the
model. Working in the grand-canonical ensemble and with
periodic boundary conditions, the Bose model of interest is
described by the second-quantized Hamiltonian

Ĥ = Ĥ − �N̂ =� d3r �̂†�r��−
�2�2

2m
− ���̂�r�

+
1

2
� d3r� d3r� ��
r − r�
��̂†�r��̂†�r���̂�r��̂�r�� ,

�76�

where N̂ is the total number operator of spinless bosons with

mass m, � is the chemical potential, and �̂�r� and �̂†�r� are
the usual Bose field operators. The pair interaction potential
��r� in �76� is assumed �31� as the superposition of a repul-
sive Yukawa-like potential of radius R0 and of an attractive
Gaussian well of radius R�R0 and depth U0�0, with the
representation

��r� =
�

r
exp�−

r

R0
� − U0 exp�−

r2

R2� . �77�

Here � is a certain definite positive coupling parameter and
the strong attraction or deep-well condition U0R2��2 /m is
assumed to be satisfied.

For our purposes it is convenient to choose the system of
units with �=m=R0=1 and to work in the wave-vector �k�
representation. So the grand-canonical Hamiltonian �76� as-
sumes the form

Ĥ = �
k
�kak

†ak +
1

2V
�
�k	�
��
k1 − k3
��k1+k2,k3+k4

ak1

† ak2

† ak3
ak4

,

�78�

where �k=k2 /2−�, V is the volume of the system, and the
Fourier transform ��k� of the pair interaction potential �77� is
given by
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��k� =
�

1 + k2 − �3/2U0R3 exp�−
k2R2

4
� , �79�

with

��0� = � − �3/2U0R3 = �3/2�U0R3, 0� �� 1, �80�

assumed to be small.
With the previous definitions, the coupling parameters in-

volved in the pair interaction potential are connected by the
relation

� = �1 + ���3/2U0R3, �81�

and from the strong attraction condition U0R3�1, one easily
finds that ��1.

It is worth mentioning that, as shown in Ref. �31� and
confirmed by the following calculations, the Gaussian form
of the attractive part of ��r� is not essential. Indeed, the key
condition to be used through the calculations for the second
term in Eq. �77� is only a sufficiently smooth change with
distance of ��r� such that its Fourier transform is localized in
a small region of the wave-vector space �k�1 /R�.

B. q equations-of-motion method within the Bogoliubov
approximation

Adopting the conventional Bogoliubov approximation,
usually restricted to weak interactions and low densities �50�,
but proved to be valid also for high-density charged Bose gas
�51� and for the Babichenko high-density Bose model with
strong attraction between the particles �32�, the grand-
canonical Hamiltonian �78� reduces to

Ĥ � − �Nq0 +
1

2

Nq0
2

V
��0�

+ �
k�0

� fqkak
†ak +

1

2
hqk�ak

†a−k
† + aka−k�� , �82�

where Nq0 denotes an unknown q mean number of bosons in
the condensate and

fqk = �k + nq0���0� + ��k�� , �83�

hqk = nq0��k�, nq0 =
Nq0

V
. �84�

According to the standard Bogoliubov picture, one now
should diagonalize the truncated Hamiltonian �82� by a lin-
ear canonical transformation and then proceed, at least in
principle, to calculate the OLM low-temperature
q-thermodynamic quantities with the prescription outlined in
Sec. II �for the extensive case, see Ref. �32��. However, we
find it convenient to follow a different approach which
makes direct contact with the q many-body formalism devel-
oped in Secs. III–VI and allows us to explore, via direct
explicit calculations, the q-induced nonextensivity in the
low-temperature regime in a simpler and more transparent
way.

Let us introduce the single-particle retarded and advanced
two-time q GFs

Gqk
�	���� = − i
	�����ak���,ak

†�−�q, �85�

Ḡqk
�	���� = − i
	�����a−k

† ���,ak
†�−�q, �86�

where the Heisenberg representation of the operators and the
q averages have to be considered with respect to the trun-
cated Hamiltonian �82�.

Working in  space, for the retarded or advanced q GFs

Gqk��= ��ak��� ;ak
†��q, and Ḡqk��= ��a−k

† ��� ;ak
†��q,, one

easily finds the two coupled EMs

Gqk�� = 1 + fqkGqk�� + hqkḠqk�� , �87a�

Ḡqk�� = − hqkGqk�� − fqkḠqk�� . �87b�

This algebraic system can be simply solved to find

Gqk�� =
 + fqk

2 − qk
2 =

1

2
��1 +

fqk

qk
� 1

 − qk

+ �1 −
fqk

qk
� 1

 + qk
� , �88�

Ḡqk�� =
− hqk

2 − qk
2 =

− hqk

2qk
� 1

 − qk
−

1

 + qk
� . �89�

Here, the quantity

qk = �fqk
2 − hqk

2 �1/2

= �� k2

2
− � + nq0���0� + ��k���2

− nq0
2 �2�k��1/2

�90�

represents the energy �frequency� spectrum of the undamped
elementary excitations in the system. To obtain the relevant q
physical quantities it is now convenient to introduce the

single-particle q SDs for the two q GFs Gqk and Ḡqk defined
as �see Eqs. �23� and �24��

�qk�� = ��ak���,ak
†�−�q, �91�

and

�̄qk�� = ��a−k
† ���,ak

†�−�q,, �92�

respectively.
Then, from Eqs. �32�, �88�, and �89�, we immediately

have the two �-function representations for the spectral den-
sities:

�qk�� = ���1 + �qk��� − qk� + �1 − �qk��� + qk��
�93�

and

�̄qk�� = ��qk��� + qk� − �� − qk�� , �94�

where
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�qk =
fqk

qk
, �qk =

hqk

qk
. �95�

We are now in the position to formally determine the rel-
evant q-thermodynamic quantities simply taking into account
the general relations stated in Sec. III.

First, we focus on the chemical potential that, within the

Bogoliubov scenario, is defined by �52� �= ��Ĥ /�Nq0�q.

Since Ĥ=Ĥ+�N̂, with N̂�Nq0+�k�0ak
†ak, Eq. �82� yields

Ĥ � ��
k�0

ak
†ak +

1

2

Nq0
2

V
��0�

+ �
k�0

� fqkak
†ak +

1

2
hqk�ak

†a−k
† + aka−k�� . �96�

Then, with simple algebra, we get

� = nq0��0� +
1

nq0V
�
k�0

��fqk − �k��ak
†ak�q + hqk�ak

†a−k
† �q� .

�97�

Besides, for the q internal energy Uq= �Ĥ�q, we find

Uq = ��N − Nq0� +
1

2

Nq0
2

V
��0�

+ �
k�0

�fqk�ak
†ak�q + hqk�ak

†a−k
† �q� . �98�

In Eq. �98�, N= �N̂�q and N−Nq0=�k�0�ak
†ak�q, where N is

the total number of bosons in the system. In particular, the q
depletion of condensate will be given by

n − nq0 =
1

V
�
k�0

�ak
†ak�q, �99�

where n=N /V is the total number density of particles. Notice

that, using Eq. �99�, expressions �97� and �98� for � and �Ĥ�q
can be also written in the most compact form

� = n��0� +
1

V
�
k�0
��k���ak

†ak�q + �ak
†a−k

† �q� �100�

and

�N̂�q = Nq0�� − nq0��0�� +
1

2

Nq0
2 ��0�

V
+

1

2 �
k�0

k2�ak
†ak�q.

�101�

Due to the complicated relations �54� and �55�, it is not easy,
in general, to calculate explicitly the q averages which enter

Eqs. �97�–�99� in terms of the q SDs �qk�� and �̄qk��.
Intricate numerical calculations become necessary, or one
must resort to reliable approximations to obtain analytical
results. The problem becomes sensibly handier under the
condition �see Eq. �56��


�1 − q���Ĥ − Uq�
� 1, �102�

with Uq=Uq−��N̂�q. Under this condition, from Eq. �57� it
immediately follows that

�ak
†ak�q = �

−�

+� d

2�

�qk��
ẽq
� − 1

�103�

and

�ak
†a−k

† �q = �
−�

+� d

2�

�̄qk��
ẽq
� − 1

. �104�

On the other hand, in the present Bogoliubov scenario,

�qk�� and �̄qk�� are exactly expressed by Eqs. �93� and
�94�. Then, from Eqs. �103� and �104� we easily find

�ak
†ak�q =

1

2� 1 + �qk

ẽq
�qk − 1

+
1 − �qk

ẽ q
−�qk − 1

� �105�

and

�ak
†a−k

† �q =
1

2
�qk� 1

ẽ q
−�qk − 1

−
1

ẽq
�qk − 1

� , �106�

where �qk and �qk are given by Eqs. �95�.
To calculate explicitly and consistently the

q-thermodynamic quantities as functions of the temperature
T and the total number density n, one must now express the
chemical potential as a function of T and n, performing the
sums over k in the previous basic expressions. This is not
an easy task since, as q, � enters the problem in a cumber-
some way through the energy spectrum qk. However, it
will be shown below that, in the physical regimes of interest
�high-density and low-temperature regimes�, one has

�−�q0
 /�q0�1, with �q0=nq0��0�, and, consistently,
�n−nq0� /n= �N−Nq0� /N�1, as expected in a Bogoliubov
approximation scenario. This key feature allows us to sim-
plify sensibly the problem setting, as a good �first� approxi-
mation, ���q0=nq0��0�= �nq0��� / �1+�� and also nq0�n
in the expressions of �k, qk, and fqk, which enter the previ-
ous general relations for the relevant q-thermodynamic quan-
tities. So, in particular, with ���q0+��, the correction ��
to the chemical potential will be given by the last two terms
of Eq. �97� with � replaced by n��0�. In all cases, for ex-
plicit calculations, the expressions of �k, qk and fqk in the
summands can be approximated, to leading order, as

�k 
k2

2
− n��0� , �107�

qk  � k4

4
+ nk2��k��1/2

	 k, �108�

fqk 
k2

2
+ n��k� 	 fk. �109�

Notice that k, on the right-hand side of expression �108�, is
just the Bogoliubov energy spectrum of elementary excita-
tions.
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After that, with V−1�k�0�¯� →
V→�

�2�2�−1�0
�dk k2�¯�, very

complicated integrals remain again to be performed due to
the presence of the power-law function ẽq

x involved in the
integrands. Since resorting to numerical calculations by
variation of � and q is beyond the purposes of the present
work, to obtain demonstrative explicit results one is then
compelled to make further suitable approximations as the
known factorization procedure �53� or expansions close to
the extensive value q=1 of the Tsallis parameter. We follow
here the second direction because it is simple and instructive
to estimate, to the leading order in q−1, the q nonextensive
effects on the already known exact extensive results �32� in
the high-density and low-temperature regimes where the in-
tegrals can be explicitly calculated.

To the first order in q−1 one obtains the expansion

1

ẽq
��k − 1

�
1

e��k − 1
+

1

2
�1 − q�

�
e��k

�e��k − 1�2 ��2k
2 � 2�k� . �110�

So, for the basic q-thermodynamic quantities, we can for-
mally write �with a cumbersome but simple algebra�

n − nq0 �
1

2V
�
k�0

fk − k

k
+

1

V
�
k�0

fk

k

1

e�k − 1
+

1

2
�1 − q�

���2

V
�
k�0

k
2e�k

�e�k − 1�2 + 2
�

V
�
k�0

fke�k

�e�k − 1�2� ,

�111�

�� n��0� +
1

n�− 1

2V
�
k�0

�fk − k� +
1

V
�
k�0

k

e�k − 1�
−

1

2n� 1

2V
�
k�0

k2 fk − k

k
+

1

V
�
k�0

k2fk

k

1

e�k − 1�
+

1

2
�1 − q���2

V
�
k�0

k
2��k�e�k

�e�k − 1�2 + 2
�

V
�
k�0

k2��k�e�k

�e�k − 1�2� ,

�112�

�Ĥ�q �
1

2

N2

V
��0� −

1

2 �
k�0

�fk − k� + �
k�0

k

e�k − 1
+

1

2
�1 − q�

���2 �
k�0

k
2 fke�k

�e�k − 1�2 + 2��
k�0

k
2e�k

�e�k − 1�2� . �113�

Now all the integrals in Eqs. �111�–�113� can be consistently
calculated under the conditions �n��1/2�1 �high-density re-
gime� and ��1 �low-temperature regime� where it is rea-
sonable to speculate that the Bogoliubov approximation pre-
serves its validity �32�. Indeed, making the transformation
x=k�n��1/4, one sees that the principal contribution to the
integrals is made by x�1 so that neglecting O(�n��−1/2) or
exponentially small terms is quite legitimate �31�. A similar
situation arises also in a high-density Bose gas with Cou-
lomb interaction between bosons �49,51�. Bearing this in

mind, in the high-density and low-temperature limits, for the
depletion of condensate, the chemical potential, and the q

internal energy density uq=Uq /V= �Ĥ�q /V as functions of T
and n, one finds �see Appendix B for calculations of the
integrals�

n − nq0 � a�n��3/4 +
1

12
�� + 1

�
�1/2

�n��−1/2T2

+ �1 − q�
1

6
�� + 1

�
�1/2

�n��−1/2T2

��1 +
2�2

5
�� + 1

�
��n��−1T� , �114�

��
� + 1

�
�n�� − b��n��1/4 +

�2

60
�� + 1

�
�3/2

��n��−5/2T4

+ �1 − q�
�2

15
�� + 1

�
�1/2

��n��−3/2T3

��1 + 2�� + 1

�
��n��−1T� , �115�

uq �
1

2

� + 1

�

1

�
�n��2 −

4

5
b�n��5/4 +

�2

30
�� + 1

�
�3/2

�n��−3/2T4

+ �1 − q�
�2

15
�� + 1

�
�1/2

�n��−1/2T3

��1 + 2�� + 1

�
��n��−1T� , �116�

where a=�2�2�1 /4� / �48�5/2� and b=�2�2�3 /4� / �4�5/2�.
Notice that, from Eqs. �114� and �116�, for �nq0��1/2

��n��1/2�1 and T�1 one has �n−nq0� /n�1 and

�−�q0
 /�q0�1, as expected, signaling the internal consis-
tency of calculations. Of course, for q=1 the extensive re-
sults are exactly reproduced �31,32�. From the previous basic
relations one can now calculate all the q-thermodynamic
quantities of the system using the OLM formalism �29,30�.
For instance, the q specific heat at constant volume is given
by

CqV = � �uq

�T
�

V

�
2�2

15
�� + 1

�
�3/2

�n��−3/2T3 + �1 − q�

�
�2

5
�� + 1

�
�1/2

�n��−1/2T2�1 +
8

3
�� + 1

�
��n��−1T� .

�117�

It is worth noting that, as suggested by previous results, the
q-induced thermal effects may compete sensibly with the
extensive contributions.

C. q-spectral density method at work: The two-pole
approximation

In this section we apply the q SDM directly to the grand-
canonical Hamiltonian �78� by avoiding the Bogoliubov ap-
proximation and hence the known troubles related to a trun-
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cated Hamiltonian which no longer conserves the particle
number and to the unwanted dependence of Nq0.

Taking advantage from the previous results, we will work
rather via a two-�-function ansatz for the appropriate q SD as
suggested by Eq. �93�. Then, we will establish the conditions
for which the results of Sec. V B can be reproduced in the
high-density and low-temperature regimes. As we shall see,
the procedure will also open a window towards a possible
systematic study of the q-thermodynamics of other more re-
alistic second-quantized many-boson models.

For the Hamiltonian �78� in the wave-vector representa-
tion, we introduce the single-particle q SD

�qk�� = ��ak���,ak
†�−�q,. �118�

Then, the general q MEs, Eq. �73�, for the present problem
can be written as

�
−�

+� d

2�
m�qk�� = ��LĤ

m
ak,ak

†�−�q = ��ak,LĤ
m

ak
†�−�q

�m = 0,1,2, . . .� . �119�

Using the usual bosonic canonical commutation relations,
tedious but simple algebra yields for m=0,1 ,2 �the case of
interest for us�

�
−�

+� d

2�
�qk�� = 1, �120�

�
−�

+� d

2�
�qk�� = �k + ��0�n +

1

V
�
k�

��
k − k�
�Nqk�,

�121�

�
−�

+� d

2�
2�qk�� = − �k

2 + 2�k�
−�

+� d

2�
�qk��

+ Lq +
2

V
�
k�

��
k − k�
��qk�,

�122�

where

n =
1

V
�
k

�ak
†ak�q, �123�

Nqk = �ak
†ak�q, �124�

Lq =
1

V2 �
�k	�
�k1+k2;k3+k4

�2�
k1 − k3
��ak1

† ak3
ak2

† ak4
�q,

�125�

and

�qk =
1

2V
�
k�

��
k − k�
�Nqk� +
1

V
�

�k1,k2,k4�
��
k1 − k
�

��k1+k2;k+k4
�ak1

† ak2

† akak4
�q. �126�

As we see, Lq and �qk introduce in the problem two-particle
q CFs which should be expressed in terms of �qk�� to close
the truncated system of MEs �120�–�122�. Unfortunately, this
constitutes a serious difficulty since, as shown in Sec. III,
there is no simple relation between a CF of the type
�BA�q and the corresponding q SD �qAB��. However, under

the condition 
�1−q���Ĥ−Uq�
�1, the calculations simplify
sensibly. Indeed, in this case, one can assume
�BA�q� �2��−1�−�

+�d �qAB�� / �ẽq
�−1� and in Eqs.

�121�–�124� and �126� one has

Nqk = �
−�

+� d

2�

�qk��
ẽq
� − 1

. �127�

Besides, with standard straightforward algebra �7,32�, we
have also

1

V
�

�k1,k2,k4�
��
k1 − k
��k1+k2;k+k4

�ak1

† ak2

† akak4
�q

= �
−�

+� d

2�

 − �k

ẽq
� − 1

�qk�� . �128�

This allows us to express �qk in Eq. �126� in terms of �qk��
as

�qk =
1

2V
�
k�

��
k − k�
��
−�

+� d

2�

�qk���

ẽq
� − 1

+ �
−�

+� d

2�

 − �k

ẽq
� − 1

�qk�� �129�

and to obtain for the q internal energy the following expres-
sion in terms of the single-particle q SD:

Uq = �Ĥ�q = �N +
1

2�
k
�

−�

+� d

2�

 + �k

ẽq
� − 1

�qk�� , �130�

where N=�kNqk.
Nevertheless, the quantity Lq cannot be expressed exactly

in terms of �qk��, so that the truncated system �120�–�122�
is not yet closed and one must resort to additional decoupling
procedures �7� which allow one to express also Lq in terms of
�qk��. We shall see below that this problem can be simply
solved on physical grounds in the regime of interest.

Working within the spirit of the SDM �7,32� �see Sec. III�,
we assume for �qk�� the two-�-function ansatz �also sug-
gested by Eq. �93��

�qk�� = ���1 + �qk��� − qk� + �1 − �qk��� + qk�� .

�131�

Then, with some algebra, Eqs. �120�–�122� yield, for the
unknown functional parameters �qk and qk, the self-
consistent equations

CAVALLO, COSENZA, AND DE CESARE PHYSICAL REVIEW E 77, 051110 �2008�

051110-14



�qkqk = �k + ��0�n +
1

V
�
k�

��
k − k�
�Nqk�, �132�

qk
2 = Lq +

2

V
�
k�

��
k − k�
��qk� + �k��k + 2n��0��

+
2

V
�
k�

��
k − k�
�Nqk�. �133�

In these equations Nqk is formally given by Eq. �105� and

�qk =
1

4V
�
k�

��
k − k�
�� 1 + �qk�

ẽq
�qk� − 1

+
1 − �qk�

ẽ q
−�qk� − 1

�
+

1

2��qk − �k��1 + �qk�
ẽq
�qk − 1

−
�qk + �k��1 − �qk�

ẽ q
−�qk − 1 � .

�134�

Of course, when �qk and qk are known, for the q GF related
to �qk��,

Gqk�� = �
−�

+� d�

2�

�qk���
 − �

, �135�

we will have

Gqk�� =
1

2
� 1 + �qk

 − qk
+

1 − �qk

 + qk
�

=
 + �k + n��0� + 1

V�k�
��
k − k�
�Nqk�

2 − qk
2 .

�136�

As expected, Eq. �136� implies two poles =�qk �with
qk�0� on the  real axis and hence the parameter qk
determines the q energy spectrum of the undamped elemen-
tary excitations in the system, formally given by

qk
2 = �Lq +

2

V
�
k�

��
k − k�
��qk�

+ �k��k + 2n��0� +
2

V
�
k�

��
k − k�
�Nqk���1/2
.

�137�

In the polar ansatz �131�, to determine �qk�� and hence all
the relevant q-thermodynamic quantities, the problem re-
mains to express the unknown higher-order quantity Lq in
terms of the parameters �qk and qk.

This difficulty can be easily overcome if we limit our-
selves to explore the condensate phase �which is of main
interest for our Bose model in the high-density and low-T
limits� when a macroscopic population of the zero-moment
single-particle state takes place. Indeed, in this situation one
can obtain a formally exact expression for Lq setting qk=0
=0 below a certain critical temperature �1,54�, to find, from
Eq. �137�,

Lq = − �2 + ��2��0�n +
2

V
�
k�

��k��Nqk�� −
2

V
�
k�

��k���qk�,

�138�

where Nqk and �qk are given by Eqs. �127� and �129�.
Then, in the condensate state the q energy spectrum of the

elementary excitations can be written in the form

qk = � k4

4
+ k2� 1

V
�
k�

��
k − k�
�Nqk�

− �� − n��0��� +�qk�1/2
, �139�

where

�qk =
2

V
�
k�

���
k − k�
� − ��
k�
����qk� − �Nqk�� .

�140�

Of course, Eq. �139� does not provide the explicit q disper-
sion relation as a function of T and n since Nqk and �qk
contain qk itself and �qk which have to be still determined
as solutions of the closed system of equations �132� and
�139�.

In general, this problem is difficult to solve and, as for the
extensive counterpart �7,55�, one is forced to consider
asymptotic regimes for obtaining explicit results or to use
numerical calculations. Obviously, solving numerically the
previous closed self-consistent set of coupled q MEs, by
variation of T and q, constitutes a formidable tour de force
�beyond the purposes of the present paper� which requires a
separate study. Here, to avoid obscuring complicated calcu-
lations, we follow the procedure already used for the exten-
sive case �55� to obtain, in a natural way, predictions for the
condensate state assuming

N − Nq0

N
=

n − nq0

n
� 1 �141�

and


��

n��0�

� 1, �142�

where ��=�−n��0�.
These inequalities, already used in the previous subsec-

tion just as the basic conditions for the validity of the Bogo-
liubov approximation, must be consistently satisfied at the
end of calculations.

It is easy to check that under conditions �141� and �142�,
with ��n��0� and nq0�n to leading order, the q MEs sim-
plify to �56�

�qkqk  k2/2 + n��k�, qk
2  �k

�B��2 +�qk
�0�. �143�

Here
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k
�B� = � k4

4
+ nk2��k��1/2

�144�

is the Bogoliubov spectrum and

�qk
�0� = 
�qk
��n��0�

�
n

V
�
k�

��k�����
k − k�
� − ��k���

��1 + � 1

ẽ
q

�k�
�B�

− 1
+

1

ẽ
q

−�k�
�B�

− 1
��

+
1

V
�
k�

���
k − k�
� − ��k����k�
�B� − �k�

k�

2 �
�� 1

ẽ
q

�k�
�B�

− 1
−

1

ẽ
q

−�k�
�B�

− 1
� �145�

provides an estimate of the correction to the Bogoliubov
spectrum where the inequality 
�qk

�0�
� �k
�B��2 has to be

checked at the end of calculations. Of course, from Eq.
�143�, we have for the parameter �qk

�qk �
k2/2 + n��k�
k

�B� �1 −
�qk

�0�

2�k
�B��2� . �146�

Thus, the original q-moment problem is solved and all the
q-thermodynamic properties for the condensate region under
the conditions �141� and �142�, and in particular the q deple-
tion of the condensate n−nq0=�k�0Nqk, follow immediately
from the spectral relations �127�, �130�, and �135�, with
�qk�� given by the two-�-function representation �131�. All
the relevant expressions in terms of qk and �qk at the Bo-
goliubov approximation level can be easily derived or also
obtained from Ref. �55� with ex replaced by ẽq

x. These are
quite cumbersome and not particularly instructive, and hence
they will not be reported here for brevity reasons.

It is remarkable that, by a straightforward extension to the
case q�1 of the procedure used in Ref. �55� for the exten-
sive case, one can systematically estimate, at least in prin-
ciple, the corrections to the predictions of the Bogoliubov
approximation for any plausible potential ��k�.

For the high-density Bose model under study in the re-
gime of interest, the parameters qk and �qk in all the sum-
mands can be replaced by their leading expressions k

�B� and
�k

�B�= �k2 /2+n��k�� /k
�B� and the basic equations become es-

sentially identical to that obtained in Sec. V B. In particular,
with �n��1/2�1 and ��1, all the results �114�–�117� near to
the extensive regime are easily reproduced and the condi-
tions �141� and �142� are found to be consistently satisfied.

As a conclusion, we make some comments which may be
of practical interest for future calculations. For the high-
density Bose model defined in SecV A, and possibly for
other models, the q SDM offers some advantages with re-
spect to the method used in Sec. V B based on the Bogoliu-
bov scenario. Adopting the q SDM one avoids the a priori
replacement a0

† ,a0→Nq0
1/2 in the original Hamiltonian and

hence some consequent conceptual difficulties �57� in both

the extensive and nonextensive cases. Besides, it allows one
to obtain, in a systematic way, the corrections to the Bogo-
liubov predictions. Finally, the procedure may be adapted to
other more realistic situations provided that the conditions
�141� and �142� are consistently satisfied at the end of calcu-
lations.

VI. CONCLUDING REMARKS

In this paper we have extended the general formalism of
two-time GFs �2,3,7� to nonextensive quantum statistical me-
chanics in the OLM representation �29�. Particular attention
has been devoted to the spectral properties and to the concept
of SDs, which is expected to play an important role in ex-
plicit calculations also in nonextensive quantum many-body
problems. Besides, we have presented the q EMM and the
nonextensive version of the less known SDM �7� for a direct
calculation of the q GFs and q SDs, respectively. A remark-
able feature is that these methods should allow one, at least
in principle, to explore on the same footing the nonextensiv-
ity effects for a wide variety of quantum many-body systems
overcoming the a priori knowledge of the q partition func-
tion and hence of the q free energy. Unfortunately, in contrast
to the extensive case �2,3,7�, the q CFs of two generic op-
erators A and B cannot be expressed in a simple way, as the
q GFs, in terms of the q SD �qAB�� defined in terms of the
same operators. This introduces in the formalism some in-
trinsic difficulties which, in view of the present still limited
experience, can be overcome only under appropriate con-
straints such as, for instance, close to the extensive regime.
Under the restrictive condition �56�, the calculation of q CFs
is sensibly simplified and we have shown how the formalism
works in exploring the q-induced nonextensivity effects on
the low-temperature properties of the model �78�–�80� for
the high-density Bose gas with strong attraction between the
particles �31�.

In any case, it is desirable to test again the effectiveness
of the q EM and q SD methods for other many-body prob-
lems in nonextensive quantum statistical mechanics. A pre-
liminary study along this direction can be found in Ref. �46�
where we have applied the q SDM to an isotropic Heisen-
berg model with long-range exchange interactions.

We wish to stress again that, in the context of practical
calculations, the crucial problem remains to understand how
one can calculate the relevant q CFs and the related
q-thermodynamic quantities by using the general formulas
�54� and �55� beyond the limiting condition �56�.

In conclusion, in light of the great experience acquired in
the extensive statistical mechanics �1–10�, we believe that
the q GF technique and, in particular, the q SDM may con-
stitute a powerful tool of investigation also in nonextensive
many-body theory.

APPENDIX A: TWO-TIME GREEN’s FUNCTIONS AND
SPECTRAL DENSITY METHOD IN NONEXTENSIVE

CLASSICAL THERMOSTATISTICS

As mentioned in the Introduction, the pioneering frame-
work of the two-time GF method in extensive classical sta-
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tistical mechanics by Bogoliubov and Sadovnikov �8� has
opened the concrete possibility to describe classical and
quantum many-body systems on the same footing. Besides,
in many physical situations �when the quantum effects are
negligible�, the use of the classical formalism may offer sub-
stantial advantages especially from the computational point
of view because in the calculations one handles only func-
tions and not operators.

Recently, the two-time GF technique and SDM have been
formulated in nonextensive classical thermostatistics, within
the OLM framework, in two of our papers �27,28� and con-
veniently applied to the ferromagnetic Heisenberg chain. For
completeness, in this appendix, we review the basic equa-
tions to underline the main differences with the correspond-
ing quantum case which has been the subject of the present
article.

First, we note that the basic ingredients of the quantum
Tsallis thermostatistics shortly reviewed in Sec. II remain
formally valid for the classical framework. Here, �=��q ,p�
denotes the probability distribution defined in the space
phase �, q= �q1 , . . . ,qN� and p= �p1 , . . . , pN� are the general-
ized coordinates, and Tr�¯� stands for
��¯�d�=��i=1

N dqidpi, for a classical system with Hamil-
tonian H�q ,p� and N degrees of freedom. As for the
quantum case, also in this appendix we adopt the classical
OLM representation �see Eqs. �10�–�13�, �14a�, �14b�, and
�15�–�17��.

1. Classical two-time q Green’s functions
and q-spectral density

In classical nonextensive thermostatistics, the two-time q
GFs involving two classical observables are defined by �27�

GqAB
�	� �t,t�� = ��A�t�;B�t����q

�	� = 
	�t − t����A�t�,B�t����q,

�A1�

where the set of Poisson brackets �. . . , . . .� replaces the quan-
tum commutator −i�. . . , . . .�� and the q expectation value is
taken over the phase space within the OLM spirit. Here, X�t�
�with X	A ,B� represents a dynamical variable depending
on time through the canonical coordinates with X�t�
=X(q�t� ,p�t�)=X(eiLHtq�0� ,eiLHtp�0�)=eiLHtX�0�, where LH
= i�H , . . .� is the Liouville operator. Hence, eiLHt acts as a
classical time-evolution operator which transforms the dy-
namical variable X�0�	X at initial time t=0 into the variable
X�t� at arbitrary time t, satisfying the Liouville equation
dX�t� /dt= iLHX�t�.

The main difference of the quantum and classical q GF
methods lies in the relation between the q GFs and the q
CFs. Actually, starting from the definitions of Poisson’s
brackets and q mean value, it can be shown that �27�

GqAB
�	� �t,t�� = q�
	�t − t��

d

dt
FqAqBq

�t,t�� , �A2�

connecting GqAB
�	� �t , t�� to the new generalized two-time q CF

FqAqBq
�t,t�� = �Aq�t�Bq�t���q �A3�

of the two q dynamical variables Aq and Bq defined �working
in the canonical ensemble� by

Xq =
X

�Cq

, Cq = 1 − ��1 − q��H − Uq�� 0. �A4�

Unfortunately, it is not possible to derive a direct relation
between GqAB

�	� �t , t�� and FqAB�t , t�� as happens in the exten-
sive classical case �9�. Nevertheless, using the series repre-
sentation

1

1 − x
= 1 + 2�

n=1

�

Jn�nx� , �A5�

where Jn�z� are the Bessel functions

Jn�z� = �
m=0

� �− 1�m� 1
2z�2m+n

m ! ��n + m + 1�
, �A6�

with x= �1−q���H−Uq�, we can formally write the expan-
sion

GqAB
�	� �t,t�� = q�
	�t − t��

d

dt
��A�t�B�t���q + �

n,m=1

�

Cq
n,m���

��A�t�B�t���H − Uq�2m+n�q� , �A7�

where

Cq
m,n��� =

2�− 1�m� n
2��1 − q��2m+n

m ! ��n + m + 1�
. �A8�

With the restriction 
x
�1 the simplest series �1−x�−1

=�n=0
� xn can be used to obtain the formula

GqAB
�	� �t,t�� = q�
	�t − t��

d

dt
��A�t�B�t���q

+ �
n=1

�

�n�1 − q�n�A�t�B�t���H − Uq�n�q� .

�A9�

In particular, we have

GqAB
�	� �t,t��  q�
	�t − t��

d

dt
�A�t�B�t���q, �A10�

under the condition 
x
= 
��1−q��H−Uq�
�1. This shows
that only in the lowest order may the q GFs be directly
related to FqAB�t , t�� as in the extensive case �9�. Any way,
we can improve systematically the approximation �A10�,
taking into account the successive terms in the expansion
�A9� relating q GF to q CFs of increasing order.

Assuming time-translational invariance, all the spectral
properties derived in Sec. III A remain formally unchanged,
but now the classical q SD �qAB�� is defined by

�qAB�� = i�
−�

+�

d� ei���A���,B��q. �A11�

Besides, from Eqs. �A2� and �A3�, one can show that �27�

�Aq���Bq�q = �
−�

+� d

2�

�qAB��e−i�

q�
. �A12�

Then, using the series representation �A9�, we get
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�
−�

+� d

2�

�qAB��
q�

= �AB�q + �
n,m=1

�

Cq
n,m����AB�H − Uq�2m+n�q,

�A13�

which corresponds to Eq. �54� and allows us to connect the
classical q CFs with the related q SD. In the limit q→1, Eq.
�A13� reproduces consistently the well-known exact exten-
sive result �9�

lim
q→1

�AB�q = �AB� = �
−�

+� d

2�

�1AB��
�

. �A14�

In order to derive the spectral decomposition for �qAB��,
we now introduce a Hilbert space Sq of the classical dynami-
cal variables with a scalar product defined conveniently by
�9,58�

�A
B�q = Z̃q�A�B�q, �A15�

with Z̃q=�d��1−��1−q��H�q ,p�−Uq��q/1−q. In this space
one can consider the eigenvalue equation LH k=k k
for the Hermitian Liouville operator. It is also immediate
to prove that, if  k is an eigenfunction of LH with �real�
eigenvalues k, then  k

� is also an eigenfunction of LH
with eigenvalue −k. If we assume that � k� is a complete
set of orthonormal eigenfunctions, we can consider the
expansions A�q ,p�=�k� k

� 
A�q k
��q ,p� and B�q ,p�

=�k� k 
B�q k�q ,p�. Bearing this in mind, we can write
�27�

�qAB�� = 2�q�Z̃ q
−1�

k

� k
Bq�q� k
�
Aq�q�� − k� ,

�A16�

which is the desired classical q-spectral decomposition for
�qAB��. In particular, if B=A�, we have that �qAA��� is a
real and positive-definite quantity. A consequence of Eq.
�A16� is that GqAB�� and �Aq�t�Bq�q can be written as

GqAB�� = 2�q�Z̃ q
−1�

k

� k
Bq�q� k
�
Aq�q

k

 − k

�A17�

and

�Aq���Bq�q = Z̃ q
−1�

k

� k
Bq�q� k
�
Aq�qe−ik�. �A18�

Thus, also in the classical case, the real poles of GqAB��
represent the frequency spectrum of undamped oscillations.

2. Methods of calculation for classical two-time q Green’s
functions and q-spectral density

a. Classical equations-of-motion method

As in the quantum case, successive differentiations of Eq.
�A1� with respect to �= t− t� yield the infinite hierarchies of
classical coupled EMs in � and  representations:

d

d�
��LH

mA���;B��q
�	� = ������LH

mA,B��q + ��LH
m+1A���;B��q

�	�

�m = 0,1,2, . . .� �A19�

and

��LH
mA���;B��q,

�	� = i��LH
mA,B��q + i��LH

m+1A���;B��q,
�	�

�m = 0,1,2, . . .� , �A20�

respectively, where LH= iLH and LH
mA means LH

0 A=A, LH
1 A

= �A ,H�, LH
2 A={�A ,H� ,H}, and so on.

At this stage, the considerations made in Sec. IV B for
solving the EMs in the quantum case apply for the classical
one, too.

b. Classical q-spectral density method

From the definition �qAB���= i��A��� ,B��q of the classical
q SD in � space, successive derivatives with respect to �
yield

dm

d�m�qAB��� = i��LH
mA���,B��q �m = 0,1,2, . . .� .

�A21�

Then, proceeding as in the quantum case, we easily find

�
−�

+� d

2�
m�qAB�� = − �i�m−1��LH

mA,B��q �m = 0,1,2, . . .� .

�A22�

The quantity on the left-hand side will be called the m mo-
ment of �qAB��, and relation �A22� can be seen as an infi-
nite set of exact MEs or sum rules for the classical q SD.

As for the quantum counterpart, due to the possibility to
evaluate the Poisson brackets and hence the q averages on
the right-hand side of Eq. �A22�, the m moments can be
explicitly calculated without a priori knowledge of �qAB��.
So one can consider the sequence of equations, Eq. �A22�, as
a typical moment problem to determine the unknown func-
tion �qAB�� and hence all the related macroscopic q quan-
tities. At this stage, in view of the classical exact q-spectral
decomposition �A16� for �qAB��, the basic idea of the SDM
�7� for classical q thermostatistics does not differ from the
quantum case and all the considerations made in Sec. VI
about the possible functional representations for the q SD
preserve their validity in the context of the classical q many-
body theory.

APPENDIX B: CALCULATION OF k SUMS AS V\� IN
THE HIGH-DENSITY AND LOW-TEMPERATURE

LIMITS

For the �T=0�-sums over k in Eqs. �111�–�113�, with
V−1�k�0�¯�= �2�2�−1�0

�dk k2�¯� as V→� �all the sum-
mands depend only on k= 
k
� and the transformation x
=k�n��−1/4, we can write

1

2V
�
k�0

fk − k

k
=

�n��3/4

�2��2 �
0

�

dx
� x2

2 − f�x��2

f�x�
, �B1�
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1

2V
�
k�0

�fk − k� =
�n��5/4

�2��2 �
0

�

dx� x2

2
− f�x��2

, �B2�

1

2V
�
k�0

k2 fk − k

k
=

�n��5/4

�2��2 �
0

�

dx
x2� x2

2 − f�x��2

f�x�
, �B3�

where

f�x� = � x4

4
+ �n��1/2x2� �n��−1/2

�n��−1/2 + x2 −
e−�n��1/2x2R2/4

� + 1
��1/2

.

�B4�

Following Babichenko �31�, with �n��1/2�1 one can now
neglect the term �n��−1/2 with respect to x2 and the Gaussian
part in Eq. �B4�. This is quite legitimate since the basic con-
tribution to the previous integrals is made by x�1.

Then, one finds

1

2V
�
k�0

fk − k

k
� a�n��3/4, �B5�

1

2V
�
k�0

�fk − k� �
4

5
b�n��5/4, �B6�

1

2V
�
k�0

k2 fk − k

k
�

2

5
b�n��5/4, �B7�

where

a =
1

�2��2�
0

�

dx
��1 + x4

4 �1/2
− x2

2 �2

�1 + x4

4 �1/2 =
�2

48�5/2�
2�1

4
� ,

�B8�

b =
1

�2��2�
0

�

dx
�1 + x4

4 �1/2
− x2

2

�1 + x4

4 �1/2 =
�2

4�5/2�
2�3

4
� . �B9�

Concerning the T-dependent sums over k in Eqs.
�111�–�113�, in the low-temperature limit only small values

of k contribute to the integrals which contain exponential
functions. So, with the additional condition �n��1/2�1, all
the integrals can be exactly computed and we get, to leading
order in T,

1

V
�
k�0

k

e�k − 1
�
�2

30
�� + 1

�
�3/2

�n��−3/2T4, �B10�

1

V
�
k�0

fk

k

1

e�k − 1
�

1

12
�� + 1

�
�1/2

�n��−1/2T2, �B11�

1

V
�
k�0

k
2e�k

�e�k − 1�2 �
2�2

15
�� + 1

�
�3/2

�n��−3/2T5, �B12�

1

V
�
k�0

fke�k

�e�k − 1�2 �
1

6
�� + 1

�
�1/2

�n��−1/2T3, �B13�

1

V
�
k�0

k
2��k�e�k

�e�k − 1�2 �
2�2

15
�� + 1

�
�1/2

��n��−3/2T5,

�B14�

1

V
�
k�0

k2��k�e�k

�e�k − 1�2 �
2�2

15
�� + 1

�
�3/2

��n��−5/2T5,

�B15�

1

V
�
k�0

fkk
2e�k

�e�k − 1�2 �
2�2

15
�� + 1

�
�1/2

�n��−1/2T5. �B16�

Inserting the previous results into Eqs. �111�–�113�, one im-
mediately obtains expressions �114�–�116� for the depletion
of the condensate, the chemical potential, the q internal en-
ergy density, and hence the q specific heat �117� as a function
of T and n in the high-density and low-temperature limits.
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